Benchmark Problems for Computational Efficiency of Rigid Multibody System Dynamics

Michael Valášek, Zbyněk Šika

Department of Mechanics, Biomechanics and Mechatronics Faculty of Mechanical Engineering Czech Technical University in Prague

Table of content

- Concept of benchmarking
- Two multibody benchmark classes for rigid MBS
- Open loop multibody benchmark
- Closed loop multibody benchmark
- Conclusion

Concept of benchmarking

- Benchmarks should test the capability of methods
- Benchmarks are constructed based on the knowledge of drawbacks of methods
- Benchmarks include the expert knowledge of methods

Two multibody benchmark classes

• Real dynamic problem

• Principal computational complexity

Open-loop rigid multibody benchmark

• Traditional rigid multibody benchmarks

- D direct
- A recursive O(n)
- C recursive O(n^2)
- R residual

Recursive methods for closedloop rigid multibody system

- Computational complexity of MBS with loops should be O(loops^3)
- Parametric method enables to solve MBS with external kinematic loop in O(loops)
- Internal kinematic loop is the problem

Benchmarks for rigid multibody systems with kinematical loops

- Rigid multibody systems with 1 DOF and increasing number of internal kinematical loops with the increasing minimum length
- Existence of such multibody system for any minimum loop length is unsolved

Graph methods for description of Multibody Systems

Two ideal objects: rigid body and kinematic joint (kin. pair)bodykinematical joint (KJ, kinematic pair)

Kin.scheme edge vertex

Graph

vertex edge

Benchmarks – 1 DOF

Lmin = 4

Lmin = 5

Benchmarks cont.

Lmin = 6

???

 $\bullet \bullet \bullet$

Different processor structure

- Theory developed for single processor
- Is it valid also for multiple parallel processors?
- Investigation of parallelized multibody formalisms on the benchmarks necessary
- Current results challenge for parallel processors is the amount of interconnection of bodies = closed loop multibody benchmarks

Not so severe but more realistic?

• Benchmark proposed in Torres-Moreno et al. paper from session on Efficient simulation and real-time applications

• Would material model or MBS structure require even more interconnections?

Conclusions

- Principal computational complexity rigid multibody benchmarks
- Traditional open loop multibody benchamrks
- New closed loop multibody benchmarks
- Difference between serial/parallel formalisms?

Thank you for your kind attention

